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Abstract. The stationary probability distribution. P5,, for an overdamped particle moving 
in a one-dimensional potential and subject to exponentially correlated noise having correla- 
tion time 7, is determined using several different methods. Firstly, the evaluation of a 
path-integral representation far a conditional probability distribution for small D, where 
D is the noise strength, is performed to show that P , , ( x )  - D-' / 'p (x )  exp(-S(x)/D). The 
function S(x) and the prefactor p ( x )  are evaluated for various values of T i n  the case of 
the double-well potential V ( x )  = -x2/2+x'/4. Secondly, a numerical simulation of the 
stochastic process is carried out directly to determine the validity of the  small-Dapproxima- 
lion. Excellent agreement is found for D 4 O(O.1). except for a small region near the top 
of the potential barrier at x=O, when T> 1. Finally, an investigation of this region is 
carried out directly using a two-dimensional Fokker-Planck equation, which shows that 
the small-D expansion breaks dawn for i> t when 1x15 D'"'*". 

1. Introduction 

The form of the stationary probability distribution, P,,, for a particle moving in a 
double-well potential subject to extemal (non-white) noise has still many open ques- 
tions associated with it (see Doering el a /  (1989) for reviews on the topic of external 
noise). Even for the simplest case of an overdamped particle moving in one dimension 
in a potential V ( x )  subject to exponentially correlated noise c(t), the structure of 
P J x )  bas not been completely elucidated. The purpose of this paper is to investigate 
this model using several different techniques (path-integral methods, numerical simula- 
tion, use of the Fokker-Planck equation near the top of the barrier) in order to 
understand the analytic structure of P, , (x)  more fully and to resolve various discrepan- 
cies in the results that are obtained when these different techniques are used. 

The model is defined by the Langevin equation 

X=-V'(x)+C(f) (1) 

where the noise [ ( I )  is Gaussian with zero mean and with 

In a recent series of papers (McKane et a /  1990, Bray et a/ 1990, Luckock and McKane 
1990) this model has been studied using a path-integral approach (an extensive list of 
references relating to this model is given in  the first of these papers). Bray et a /  (1990) 
have shown that the stationary probability distribution P J x )  for this model has the 
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form P,,(x)-exp(-S(x)/D) in the small-D limit. The function S(x) is the action of 
the extrema1 path found by applying the method of steepest descents to the appropriate 
functional integral. In this paper we discuss how to extend the method of steepest 
descents to next order for small D. For the model described by ( 1 )  this will allow the 
determination of the prefactor multiplying the exponential in the expression for the 
stationary probability distribution. 

To illustrate the method, we begin in section 2 by considering the white noise limit, 
T = 0, for which the stationary distribution can be obtained in closed form. In section 
3 we go on to study the case of general T. Expressions are given for the stationary 
joint distribution P3,(x, x) and the stationary marginal distribution P, , (x)  in the weak- 
noise limit, including the prefactors multiplying the leading-order exponential forms. 
In section 4 we describe the evaluation of the prefactor for the stationary marginal 
distribution for the special case of the quartic bistable potential, V ( x )  = -x'/2+x4/4. 

An important question that can reasonably be asked is, how small does D need to 
be for the above analysis to yield a good approximation for P,,(x)? To answer this 
and other points we describe the results of a numerical simulation of the Langevin 
equation in section 5 and compare it with the weak-noise results of section 4. 

The numerical calculations of the weak-noise stationary marginal distribution show 
a marked change in behaviour near the top of the barrier at T = 1. In section 6 we 
describe how this can be studied using the Fokker-Planck equation. In particular, we 
determine the analytic form of Ps,(x, x) and P,,(x) for small x and x and discuss the 
anomalous behaviour of these functions for T >  1. Our conclusions are presented in 
section 7.  

K M Rattray and A J McKane 

2. The white noise limit 

In the limit 7'0, the correlation function of the noise tends to a delta function, 

(#( t )c(  t')) = 2DS( f - f'). (3) 

In this case a simple Fokker-Planck equation can be written down and the solution 
of the time independent version of this equation gives the familiar Boltzmann result 
P,,(x) = C exp(- V ( x ) / D ) ,  where C is a normalization constant. An analogous calcula- 
tion is not possible when the noise is coloured, and it is in this situation that the 
path-integral approach comes into its own. In this section we will show how the 
Boltzmann factor can be found by evaluating a path-integral for small D when T = 0. 
Although this is not the most straightforward approach to determining PJx) when 
T = 0, it is necessary to describe it in order to understand the method when T # 0, where 
it does appear to be the most efficient way of obtaining PA,(% x) and hence P,,(x). 

The conditional probability distribution for the model defined by (1) and (3 )  can 
be expressed as the path-integral (Graham 1973, 1975) 

9aXr[xl exp(-S[xl/D) (4) 

where 
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and 

I n  the above expression for the path integral S[x] is the ‘action’ and J [ x ]  is the 
Jacobian associated with the functional change of variables from 5 to x in  (I). 
Evaluating the path-integral (4) for small D by the method of steepest descents gives 

(7) 
where x, is the extremal path which minimizes the action S[x], M is the operator 
associated with Gaussian fluctuations around the extremal path, and N is a normal- 
ization constant. We shall take x,, to be the position of a local minimum of the potential 
since this is relevant to the calculation of the stationary probability distribution defined 

P i x ,  fix,, to)= N.i[x,](Det ? v f - ! l 2  exp(-Six.jiD) 

by 
P,,(x)- lim P(x, fixo, to).  (8) 

,,,--e 

The extremal condition SS[x]/Sx = 0 leads to the equations xc = * V’(x, ) .  For the uphill 
path beginning at a local minimum, the positive sign is appropriate so that 

x,=  V‘(x,) .  (9)  

The operator M is proportional to the second functional derivative of the action which 
is obtained from (5) as 

d2 
(10) M = -?+ V(X,)’+ V’(xJV(xJ. 

d t  

We shall assume to start with that V ( x )  is a single-well potential with its minimum 
at xo since this is the simplest case. However, we shall go on to show how the anaiysis 
may be extended to the case where V ( x )  has more than one minimum. 

The stationary probability distribution is obtained by taking the limit lo+ -m in 
(4). However, because some quantities in which we will be interested, diverge in this 
limit, to begin with we will assume that f o  is large and negative and only in the final 
stage of our calculation will we let f o +  - m. 

w e  can easiiy find expressions for the action and ihe Jacobian using equaiion (4) .  
For the action we have 

.. . 

S[xJ = $ J,: d f (1, + V’(x , ) ) ’  = V ( x )  - V ( x , )  (11) 

while for the Jacobian 

We will now turn our attention to the calculation of the determinant. Since M 
given by (10) is a Hermitian second-order differential operator it can he shown that 
(Coleman 1979) 

Det M a  + ( t j  ( i j )  

where +(t)  is the most general solution to the linear differential equation 

V ’ ’ ( x , ) + V ’ ( x C ) V ( x c )  (14) 
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subject to the boundary conditions 
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4J(ro)=0 r$(f")=l. (15) 

One solution to (14), by virtue of the Euler-Lagrange equation (9), is 4 J ( f ) = x c ( f ) .  
Making the substitution 4 =x,h into (14), where h is some function of f, gives 

Here A and B are constants which are determined by the boundary conditions (15) 
to be 

A = l / i , (  to)  B = O .  (17) 

Therefore one obtains the following expression for the determinant: 

At large negative times, x, is very close to the position of the minimum of the potential 
and, since i,= V'(x,) ,  1, is very close to zero. Therefore we expect the integral in (18) 
to be dominated by the integrand for values of f close to f,,  leading to 

where k is some positive constant. Therefore the final result for the determinant is 

-1 -.... L^ ..--: --..... :L...:--.- ,7, L -..- A--,* __.:.I- ,̂^̂ :̂_̂>I-..-.." . . I ."  
l Y U W  LllC "PIIUUS LCLLIIS currrlruurrrlg L U  1 ' 1  I l a v s  "SS11 UC' i lL  WIU, .  r r l s s l r r r r g  ,*I= L S > U I L J  

( l l ) ,  (12) and (20) into (7) we see that the prefactor, N l [ ~ , l ( D e t M ) - " ~ ,  is constant 
in the limit fa+  --OD and so the first-order small D approximation to the stationary 
probability distribution is just the Boltzmann factor, 

P&) = C exp(- V ( x ) l D )  (21) 

yhere ths constant C is determined by normdizing the probahi!ity distribution. Thus 
we have demonstrated, in the case of white noise, how the exact result for the stationary 
probability distribution found by solving the time-independent Fokker-Planck equation 
may also be found by using a path-integra1,approach. We have only considered the 
effects of fluctuations to first order; the mechanism that causes all higher order 
corrections to vanish is not clear from the analysis presented here. 

To extend the above method to a potential with more than one minimum is 
straightforward. As an example, consider the double-well potential represented in 
figure 1 with two minima at a and c and a single maximum at  x = b. The point x = b 
is a singular point of (9) in the following sense: near the top of the barrier, for values 
of x close to b it is possible to expand V ( x )  in (9) as a Taylor series about x = b to 
obtain the linearized equation, 

I,?\ 
lLLl 1, = -(y (x, - fJ j 

where a - - V " ( b ) .  For paths in the right-hand well, i.e. for x,> b, the solution of 
(22) is 

xc= b + A  exp(-af) (23) 
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Figure 1. A typical double-well potential. 

where A is some positive constant. For finite I ,  (23) can he satisfied for xc arbitrarily 
close to b, but for xc= b, (23) can he satisfied only in the limit f + CO. Thus there are 
no extrema1 paths defined on the semi-infinite time interval (-m, 1 )  which hegin at 
the minimum of a potential and end exactly at the position of a neighbouring maximum. 
A corollary to this statement is that there are no paths on (-00, f )  linking two separate 
wells. Therefore to obtain the stationary probability distribution, within the small D 
approximation, one can treat each well independently. 

Applying the result (21) to each well of the double-well potential separately, one 
obtains 

For P A X )  to be continuous at b we must have that 

lim P,,(x) = P,,(b) = lim PJx) 
x - b -  x - h +  

and hence that M, = M2. Thus 

P,,(x) = M, exp(-V(x)/D) (26) 

for all values of x. Of course, (26) may again be obtained much more simply as the 
solution of the time-independent Fokker-Planck equation. We stress again that we 
have rederived the result using the method of steepest descents in preparation for the 
next section where we consider the case of non-zero 7 for which the Fokker-Planck 
equation cannot he solved in closed form. 

calculated to leading order using the method of steepest descents by Bray et nl (1990). 
However, obtaining the prefactor multiplying the exponential pan  of the first passage 
time is in general more difficult than obtaining the prefactor for the stationary prohabil- 
ity distribution. To see this, we again consider the white noise model with the douhle- 
well potential shown in figure 1. To leading order, the escape time from the left-hand 

TI-^ -^^^  
' , ' G  IIICd'l time of zsiape fi0iii a doniain of 2::iaction %i :his model has been 
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well to the right-hand well is just given by the Arrhenius result, 

K M Rattray and A J McKane 

The uphill extremal path in this case is again given by (9) but this time the boundary 
conditions are xc(-m) = a  and = b. If we want to go beyond leading order, we 
have to evaluate both J[x,l and Det M in the expression for the conditional probability 
distribution (7). The evaluation of the Jacobian factor proceeds as before, but the 
calculation of the determinant presents a problem. According to (14), Mx,= 0, and 
because of the boundary conditions of this problem, x, vanishes at times f = +CO. Hence 
xc is an eigenfunction of M with eigenvalue zero. Since the determinant is proportional 
to the product of the eigenvalues this means that it  will vanish and hence that the 
conditional probability given by (7) will diverge in the limit to+ --CO, f + CO. Fortunately, 
this divergence can be taken care of by using the method of collective coordinates. 
However, this does introduce additional complexity into the calculation, and the 
prefactor for the mean first passage time has so far only been obtained in a small 
?-expansion (Klosek-Dygas et a/ 1989, Luckock and McKane 1990). 

3. Coloured noise 

We now consider the case T f 0, where the Fokker-Planck equation which is equivalent 
to (1) and (2) cannot be solved in closed form for the stationary probability distribution. 
The conditional probability distribution can, however, be expressed as the path integral 
(McKane et al 1990) 

x(,)=x.*( l l=* 

9xJ[x]  exp(-S[x]/D) (28) 

with 

(i9j 

and 

S[x] = a  dt[(x+ V’) + T ( X  + x V ) I 2 .  (30) J 
Evaluating (28) by the method of steepest descents gives 

P(x,x,  f lxo ,xo ,  ro)=NJ[x,](Det M)-”2exp(-S(X,x)/D) (31) 

where S(x, x )  is the action of  the extremal path, x,, which satisfies the Euler-Lagrange 
equation (Bray er a /  1990) 

( 3 2 )  -x+ v‘v“+ ?2[ .X  + 3 ~ v , ! , + x 3  1,1- X 2 V  ,,,- x v  .. rr2 1-0. - 

x 2 -  v”= ~ 2 [ 2 x x - x 2 + 2 x 3 V l r r ~ ~ 2 V x 2 1  (33) 

Multiplying the above equation by x and integrating with respect to f gives 
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where the integration constant vanishes if the initial conditions are set in the infinitely 
distant past. The second functional derivative of the action, M ,  is obtained from (30) 
as (Luckock and McKane 1990) 

where 

a( 1 )  = 3xi-,v: - ( v y  
~ ( t )  = 3ici,v:+ ( i c ) 3 v : ' - 2 i c v :  v: - (icy( v:y - (x~*v:v; 
y ( t ) =  v:v:+(v:y 

(35) 

Here we have introduced the notation V : -  V'(x,) ,  V l =  V ( x J ,  etc. 
The stationary probability distribution is obtained in the usual way by setting the 

initial conditions in the infinitely distant past. For simplicity, to start with we will 
assume that V ( x )  has a single minimum at x = x o .  For this case S(x, x )  has a global 
minimum at (i = 0, x = xo).  

To determine the normalization of the stationary probability distribution in the 
small-D limit we need only consider the region of x and x about the global minimum 
(x = 0, x = xo) of the action, since for small D the stationary joint probability distribu- 
tion will be sharply peaked about this point. For values of x near x,, the potential 
will be approximately quadratic with 

(36) 
Vt: 

V ( x )  =- ( x  - xo)2 
2 

where V i =  V"(x,). The stationary probability distribution P,,(i, x )  for a quadratic 
potential can obtained exactly by solving the time-independent Fokker-Planck equation 
which, using the form (36) for the potential, is 

The solution of which is 

( V ~ ( X - X , ) ~ + T ~ ~ )  
( VbT)'/Z( 1 + V i . )  1 f V : T  

exp -__ ( 2 0  
Po(X, x )  = 

2110 

Since the potential is approximately quadratic for x near x,,,  the stationary probability 
distribution in the small-D limit will be given by (38) in this region, and in particular 
we will have that 

On the other hand, (31) gives the stationary joint probability distribution at i =0, 
x = xo as 

P, , (O,x , )=P(O,xo ,  t 1O,x0 , -m)=  r<>--m lim NJ,(Det (40) 
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Here, J, and MO are the Jacobian and operator associated with fluctuations about the 
minimum of the potential well, where the potential is quadratic with V(x) given by 
(36). Using (36) in (29) and (341, one finds 

K M Raf f ray  and A J McKane 

where T -  f - I,,, and 

d4 d2 
Mu = T2 7- (1  + ( TV;)') y+ ( V:)2. 

df df 

Comparing (39) and (40) gives the value of the normalization constant in (31) as 

and therefore 

PAX, x ) =  f (X,  x, f Io, xo, -03) (44) 
J[x,](Det M)-'12 ( V : T ) ' / ~ ( ~ +  Vi.) 

Jo( Det MO)-'/' 1 27rD 

where the term in square brackets is to be evaluated in the limit io+ -m. 
For general T the Euler-Lagrange equation (33) has to be solved numerically for 

a given potential V(x) in order to find x , ( i ) .  It is then a straightforward task to obtain 
S(X,x) and J[xJ in (45) by substituting x,(f) into the expressions (30) and (29) 
respectively. 

The ratio Det M/Det  MO in (45) has also to be found numerically. To deal with 
the determinants we will use a result by Dreyfus and Dym (1978). These authors 
consider the case of an nth order linear differential operator M(n)  where n is a positive 
integer. When n is even they show that one can reduce the problem of obtaining the 
determinant of M ( n )  to that of finding n / 2  linearly independent solutions to the initial 
value problem M(n)+=O. For the case n = 2 ,  their result coincides with the result 
(13). For n =4, their theorem can be stated in the following way. 

Let M I  and M, be two fourth-order operators acting on functions defined in the 
interval (io, f , )  and normalized so that the coefficient of d4/df4 is the same in both 
operators. If the eigenfunctions of M ,  and M, and the first derivatives of the eigen- 
functions are set to be zero at f = f,, and f = f l  then 

D e t M ,  DetL,  
Det M, DetL, (46) - 

where 

and the {U;} satisfy 

M,uj(f)=O i, j = 1 , 2  (48) 

with the initial conditions 

i = l , 2  (49) U t (  ) -  ;ii( ) - o  u:(t , )  = 0 U ; (  I") = 0 I f 0  - 1  I f" - 
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and 

U;( to) = 0 l i X t o ) = O  &(t,)=O U;( to)  = 1 i = l , 2 .  (50)  

We will use the result (46) to calculate the ratio 

Det M 
Det Mc 
- 

in (45) on the time interval ( l o ,  t , ) .  We will deal first with the operator MO given by 
(42). We are to  find two solutions to the homogeneous equation 

subject to the two sets of boundary conditions (49) and (50). In this case the 
homogeneous equation can be solved analytically yielding the solutions 

Now we construct the matrix 

and calculate its determinant. Using (53) and (54) one finds 

where 

A(T) = (1 +( V ~ ) ' T ~ )  sinh( V;T) sinh(T/7)+2V;'r(l -cosh( ViT)  cosh( T / T ) ) .  (57) 

Repeating the above procedure for the operator M given by (34), we obtain the 
determinant Det L where 

To obtain U, and v 2 ,  (59) has to be soived numericaiiy, subject to tne same boundary 
conditions as uI and u2 in (49) and (SO). 

So, in summary, from (46) we have that 

Det M Det L 
Det MO Det Lo 

- 
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where Det Lo is given by (56), and L is the two by two matrix (58) whose entries are 
determined by solving ( 5 9 )  numerically. 

K M Rattray and A J McKane 

Using (60), the term enclosed by square brackets in (45) can be written as 

J[x,](Det - J[x,](Det L)-'12 
JdDet Jn(Det Ln)-'12 ' 

- 

In the limit to+ -m the denominator on the right-hand side of f61) is found, using 
(41) and (561, to be 

Substituting (61) and (62) into (45) we at last obtain the normalized stationary joint 
-r-h-hilit., .4:-+-ih..+in- nr 
y L " " ~ " " " J  " L I L l l " " , l " l l  a> 

T2  
P3,(x, x)  =- J[x,l(Det L)-'" exp(-S(x, x ) / D ) .  

47rD 

We now consider the marginal stationary probability distribution P,,(x),  which is 
obtained by integrating out the velocity 1 from the above expression. One can show 
that for fixed x the action S(x, x) has a single minimum with respect to 1 at x = 0. 
Expanding the action as a Taylor series about i = 0 we obtain, 

where the term linear in x is zero because the action is stationary. Using (64) in (63); 
the integral over x can be done by steepest descents to obtain the marginal stationary 
probability distribution, 

-112  

P J x )  = ~ ~ ( 8 7 r D ) - ' / ~  J[x,](Det L)-"2 exp(-S(0, x ) / D ) .  (65) 

4. Numerical calculation in the small-D limit 

In this section we describe the computation of the marginal stationary probability 
distribution P J x )  for the model described by (1) and (2)  in the small-D limit. We 
will present numerical results for the quartic double-well potential, 

V ( x ) =  -fx2+4x4. (66) 

In view of the discussion at the end of section 2, it is clear that we are able to treat 
each well separately. Moreover, we need only consider the right-hand potential well, 
0 < x < m, containing the minimum x = 1 sunce V ( x ) ,  and therefore P,,(x), is symmetric 
ahnu! x = 0: Nn!e !ha! in this case, !he po!entia! has twn we!!s which contribute eqiua! 
amounts to the area under the probability distribution curve. Therefore, the normal- 
ization of P,,(x) given in (65) is halved when we consider only one well, i.e. 

-112 
7 2  

2 
P J x )  =- ( 8 ~ 0 ) - " ~  J[x,](Det L)-'"exp(-S(O, x ) / D ) .  (67) 
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We outline below, for the potential given by (66), the procedure to be followed in 
evaluating numerically the above expression for the marginal stationary probability 
distribution. 

1. First one must solve the Euler-Lagrange equation (33) to obtain the extremal 
path x,( f ) .  If the uphill path starting at the minimum x,= 1 and ending at the point 
x,=x, where O<x<m, is defined on the semi-infinite time interval (-m,O), then the 
appropriate boundary conditions are x,( -CO) = 1, x,(O) = x and x,(O) = 0. However, in 
practice it is only possible to obtain the uphill solution on the finite time interval 
(-TO). The boundary condition at time - T  where T is large can be obtained by 
linearizing (32) for values of x close to x = 1 ,  where V is approximately quadratic. 
Doing this, one finds that the solution of (32) for large negative times obeys 

TXc-(l+ v:7)xc+ vg(X,-Xg)=o. (68) 

For a given value of x and a large but finite value of T, we solved (33) numerically 
on (- T, 0) subject to the condition (68) at t = - T and the conditions xc = x, x, = 0 at 
t = O .  The software package used to solve (33) was COLSYS (Ascher et a/ 1981). 

2. Having obtained the extremal path x c ( f ) ,  the action S(0,x) and the Jacobian 
J [ x J  are easily found by evaluating numerically the integrals in (30) and (29). 

3. The second partial derivative in (67) can be approximated thus: 

J2S(x, x) S(6, x)+S(-S, x)-2S(O, x )  
Jx2 I =  * = o  6 2  

for small 6. S ( y , x )  can be obtained for any y by solving (33) on ( - T ,  0), subject to 
the condition (68) at f = - T and x, = x, 1, = y at t = 0, and then substituting the solution 
into (30). Hence the right-hand side of (69) can be evaluated numerically for any value 
of 6. In our calculation of the second derivative we chose 6 to be typically of the order 

4. We saw in the last section how to calculate Det L. We recall that one must first 
find two linear solutions u , ( f )  and u 2 ( f ) ,  defined on ( -T,O),  to the homogeneous 
equation Mu = 0 subject to the initial conditions 

U,( - T )  = 0 U,(-T)=O U1(-T) = 1 U,(-T)=O (70) 

and 

u2( -T)  = 0 U*( - T )  = 0 U2(- T )  = 0 U2(-T)=l .  (71) 

The operator M is given by (34). The differential equation Mu=O has a fairly 
complicated form given that its coefficients depend on the numerical solution, x , ( f ) ,  
to another differential equation (33). However, because M is linear, the solutions U, 
and u2 are unique and can be obtained numerically quite easily. Having found uI(  1 )  

and u2( t ) ,  we then form the matrix 

and calculate its determinant. 

since. all the various terms in (67) have been dealt with above. 
5.  The marginal stationary probability distribution can now be obtained from (67), 
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The numerical results for various values of T are displayed in figures 2-5 .  Figure 
2 shows the action S(0 ,  x), which had been previously obtained by Bray er a /  (1990). 
Figure 3 shows the second derivative d*S(X, x)/JX2Ii=,,, found using step 2 of the above 
procedure, and in figure 4 the product J[x,](Det L)-’’’ is plotted using steps 2 and 4. 
Figure 5 is a graph of the prefactor multiplying the exponential in (67), which is 
obtained by combining the results displayed in figures 3 and 4. 

The numerical results indicate that for T >  1 the prefactor approaches zero as x 
approaches zero, while for T S  1 the prefactor is non-zero for all x. In section 6 we 
present analytical results which explain this observation. First, however, we shall 
compare the results of this section with direct numerical simulations of the Langevin 
equation. 

Figure 2. The minimal action S(0.x) plotted for the values of  r = 0 . 6 ,  1.0, 3.0 
and 5.0. 

Figure 3. The second derivative a‘S(0, .x)/a:’ far r=0.6,  1.0, 3.0 and 5.0. 
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Figure 4. The quantity J[x,](Det L)-”’, which occurs in (67).  far ~=0 .6 .  1.0, 3.0 and 5.0. 

Figure 5. The prefaclor multiplying the exponential part of P*,(.r), for T =0.6, 1.0.3.0 and 
5.0. 

5. Numerical simulations 

We carried out numerical simulations on the system of equations 

(73)  
1 1  

i = - V ’ ( x )  + 5 k = - - t + - 7 J ( 1 )  
7 7  

where q(!) is Gaussian, delta-correlated noise with diffusion constant D and V ( x )  is 
the quartic bistable potential (66) .  This system of equations is equivalent to the coloured 
noise Langevin equation (1) if the initial condition on ( ( t )  is set in the infinitely distant 
past. 

We used a second order Runge-Kutta method to evolve the equations and the 
Box-Muller algorithm (Knuth 1969) to generate the Gaussian stochastic variables, 7. 
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from uniform stochastic variables. After evolving the equations for a sufficiently long 
time, dependence on the initial conditions is lost. We evolved the equations for 100 000 
different realizations of the noise, n( t ) ,  after which the stationary distribution P,,(x) 
was extracted by dividing up the x-axis into sections and counting the number of 
simulations which resulted in the final value of the stochastic variable x( f) ending up 
in a particular section. 

To compare the results of the simulation with that of the small-D analysis of the 
previous section we extract from the stationary probability distribution the quantity 
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G(x) = ~ ( S T D ) ~ / ~ T - *  exp(S(0, x ) / D ) P , , ( x )  (74) 

where S ( 0 ,  x) is the action which was calculated in the previous section. Comparing 
(74) and (671, we see that the function G(x) in the steepest descent approximation is 
just the D-independent part of the prefactor which we shall denote by G,=,(x): 

We shall compare this quantity with G,,,(x) which is calculated from (74) using 
the stationary probability distribution P&) determined directly from the numerical 
simulations. The results for various values of D are shown in figures 6-8 for T = 3. 
From these graphs we see that the small-D analysis gives results which are in excellent 
agreement with the numerical simulations for D < O(O.l). 

x 
Figure 6. The prefactor G(x) plotted for D=U.I and i = 3 .  The points are from the 
numerical simulations and the line is from the path-integral analysis. 

In order to look more closely at the region near the top of the potential barrier, 
where the probability distribution is at a local minimum, we have plotted In P , J x )  
against x in figure 9 for D = 0.1. The graph shows that the predictions of the theory 
hold well for T = 0.6 at all values of x but that for T = 3 the theory breaks down when 
x is very close to zero. In fact, as we shall show in the following section, there is a 
threshold value of T, 7 = 1, above which the small-D analysis predicts a vanishing 
stationary probability distribution at x = 0. 
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7 [ / I  
0 .  .. 

2 o  ! \  . . /  

Figure 7. The prefactor G(x) plotted for D=O.2 and r = 3 .  The points are from the 
numerical simulations and the line is from the path-integral analysis. 

Figure S. The prefactor G(x1 plotted for D=O.3 and ~ = 3 .  The points are from the 
numerical simulations and the line is from the path-integral analysis. 

We note that the results of the simulations presented here are in agreement with 
the numerical solution of the Fokker-Planck equation obtained by lung  et a l  (1989) 
using the matrix continued-fraction method. 

6. Small-D analysis near the top of the potential barrier 

In this section, we shall discuss how, for small D near the top of the barrier at x=O, 
analytic results for P, , (x)  may be  obtained directly from the two-dimensional Fokker- 
Planck equation. This will enable us to investigate the disagreement between the 
predictions made on the basis of steepest descent calculations and  the numerical 
simulations that were described at the end of the last section. 
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Figure 9. The value of In P * , ( x )  plotted for both ~ = 0 . 6  and 7=3 at D = 0 . 1 .  The points 
are from the numerical simulations and the line is from the path-integral analysis. 

The time-independent Fokker-Planckequation equivalent to (1) and (2) is (McKane 
et a/  1990) 

JP 1 . J V ’ ( x )  JP Da2P 0 = -x-+- ( 1 + TV”( x)) - (XP) +- -+- - 
Jx T Jx T Jx r2 a x 2 ’  

For small D we seek a solution of the form, 

where f(X, x )  can be expanded as a power series in D: 

f ~ x , ~ ) = f ( X , x ) + D f i ( X , x ) + D ~ f ~ ( x , x ) +  _ _ _ .  
Keeping only the first two terms of this expansion gives us the form 

PdX, x )  = [ N  exp(-f,(i, x ) ) l  exp(-fdx, x ) / D )  (79) 
Comparing this with (631, we see that the function f&x, x )  can be identified with the 
action S(x, x ) ,  and the term in square brackets with the prefactor. Substituting the 
above form into ( 7 6 ) ,  and equating powers of D, gives the following equations in fo 
and f,: 

and 

(81) 
J f i  1 ( :J) V’ Jfi 1 J ’ fu  2 Jfo J f i  

ax T T Jx r2 Jx’ J x  Jx 
0 = x-+- ( 1  + TV”) 1 - x- -- - -- -+- 7 -, 

Equation (80) is of the Hamilton-Jacobi type. It can be checked by direct substitu- 
tion into (80) that the minimal action S(x, x )  solves this equation, i.e. the identification 
f o ( x ,  x)  _= S(x, x) is verified. For a general potential it cannot be solved analytically. 
However, near the top of the barrier we may approximate V ( x )  by the quadratic 
potential 

V ( x )  = -x2/2 (82) 
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and look for a solution of the form 

f d X ,  x)=f , (O,O)+a,x2+p"xZ.  (83) 

Substituting ( 8 2 )  and (83) into (SO),  one finds there are two possible sets of values for 
the coefficients ao, Po. Either 

a o =  ( 7 -  1)/2 p 0 = T ( 1 - T ) / 2  (84) 

or a,=O=p,. For T <  1 ,  the non-trivial solution (84) is physically reasonable: fo(x, x)  
is at a maximum with respect to x at x = 0, corresponding to a minimum of the 
probability density at the top of the barrier, and f&x ,  x)  is at a minimum with respect 
to x at x = 0, which is consistent with the fact that the global minimum of the action 
at fixed x occurs at X = O .  For ~ > l ,  the solution (84) is unphysical and one is left 
with the trivial solution, a,=p,=O. However, it is possible to find a non-constant 
solution of ( S O ) ,  of the form (Bray et a1 1990) 

. t o ( %  x)=fo(O, O)+(X)"G(x/x) ( 8 5 )  

where p > 2 .  Substituting (85) into (SO), one finds that the nonlinear term ( J f o / J X ) 2  is 
negligible for small x, x. Omittiing this term, one is left with a linear differential 
equation for G which can be solved analytically to give 

f o ( X , X ) = f o ( O , O ) + C [ ( i - X ) ' ~ T X + X ~ ] P ' ( l + r )  ( 8 6 )  

where C is an undetermined constant. The value of p can be determined from the 
following argument in the regime x < 0, x > 0: according to (86), the quantity Sfo(X, x)  = 
fo(X, x) - f , (O,  0) vanishes along the line TX = -x. On physical grounds this should be 
a simple zero of &&(X, x) which requires p = 1 + T and thus, from (861, 

(87) 

Summarizing the above results for f o ( x ,  x)  near the top of the barrier in the regime 
x<O, x > O  we have 

fo( X ,  X)  =fo( 0, 0 )  + c( X - X)'( TX + X). 

fo(0.0) - ( I  - T)X2/2+ T ( l  - T ) X 2 / 2  
f"(0, 0 )  + c(X - X)'( TX + X)  

T <  1 
T >  1. (88) a x ,  X)  = [ 

This result was originally obtained by Bray et a1 (1990). It explains the 'plateau' in 
the minimal action S(0 ,  x) which appears for T > 1 at the top of the potential barrier 
(see figure 2). 

A similar analysis can be carried out forf,(x,x) which is related, through (79), to 
the prefactor multiplying the exponential in the conditional joint probability distribu- 
tion. For T < 1 it can be expanded as a power series of the form 

f , (X ,X)  = f , ( 0 , 0 ) + a , X 2 + p , x 2 + .  . . . (89) 

whereas for T >  1 the appropriate solution does not have this simple structure. In  order 
to solve (81) for T >  1 it will prove convenient to introduce the function 

R(x,x)=exp(-f,(x,x)) (90) 

which is proportional to the prefactor multiplying the exponential in (79). Changing 
variables fromf, to R in  ( 8 1 ) ,  one obtains 
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We expect to be able to obtain the solution of this equation by adopting a similar 
approach to that used in obtaining the zeroth order result fo. In analogy with ( 8 5 ) ,  we 
look for a solution of the form 

R = x " H ( x / x ) .  (92) 

Substituting this into (91) and using the form (82) for the potential at the top of the 
barrier, as well the previously obtained solution (86) forfo, one finds that the last two 
terms are negligible compared with the others for small x; 1. By omitting these two 
terms, one obtains a linear equation in H ( x / x )  which is independenr of the zeroth 
order result fo. Solving the linear equation for H and substituting the solution into 
(92) to obtain R, yields 
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(93) = cs(i - X ) L c r - I ) ( U + 1 1 + 4 1 / ( 1 + ~ ) ~ X +  T ~ ~ r u ~ - c ~ - l ~ c y + l l l / c l + ~ l  

in the region x > 0, x < 0. C' is an undetermined positive constant. We can determine 
the value of 9 using a similar argument to that used in determining p in (86). On 
physical grounds we require that the stationary probability does not vanish along the 
line TX = -x. Examining equation (93) for the prefactor R, we see that his condition 
can only be met if the exponent, 

(94) 
9 T - ( T - l ) ( 9 +  1) 

1 + T  

is identically zero, which requires that 9 = T - 1. Substituting this value of 9 into (93), 
one obtains 

R = C ' ( i - x ) ' - ' .  (95) 
Having obtained the zeroth order and the first order results fn and f, for both T < 1 

and T >  1,  we are now in a position to write down the smaii-D form of the stationary 
joint probability distribution Pst(x, x)  in the region near the top of the potential barrier, 
for x >  0, x<O. Combining the results (88) and (95) using (79), we obtain for small 
x and x 

P&x, x) = h " ( x - ~ ) ~ - '  exp(-C(x-x) ' (~x+x) /D)  ? > I .  (96) 

I "  cor,rpa,c LllC I C > U l l b  "L U,,> D(iCLI"II W l l l l  L11G G"11151 pL"-" ,L '&, ' l ,  ""0.1JJ1J, w c  

must first obtain the marginal distribution P&) from (96), by integrating over x. For 
D + 0, the integral can be investigated by steepest descents, but to do this we need to 
find the corresponding results to (96) for other values of x and x. If x < O ,  x<O, 
continuity with (87) at x = O  requires that the exponent p in (86)  is again equal to 
(1  + T )  and that the arbitrary multiplying constant is again C. The singular behaviour 
when x = x is physical; in path-integral terms it corresponds to an interchange of 
dominant paths between those which are confined entirely to the region x<O (which 
dominate when x < x) and those involving the other well (which dominate when 1 > x). 
A similar argument to that leading to (87) can be given when x > 0, x < 0 and continuity 
at x = 0 will finally give us the form of j&x, x) when x > 0, x > 0. The generalization 
of (87) to all four quadrants is 

T. ^^I_^_^ .L^ ---..I.- ̂ C  .L:̂ ^^^.:^^ .I... "..-,:"- --.L :.....--̂ I -....,., ̂ :" ..,~ 

h(x, X)  =fn(o, o)+ c sign(x-x)jx-xj'(Tx+x) (97) 

where C is an undetermined positive constant. Similarly, since the stationary distribu- 
tion must be positive, the generalization of (95) is 

R(X, x) = C ' l i  -xi'-'. (98) 
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Using (97) and (98) and performing the integral over x in the limit D+O, one finds 

PJx) = M'IxI''-"'~ exp( Clxl'"/D) T >  1. (99) 

Equation (99) shows that P, , (x)  approaches zero as 1x1 approaches zero and thus that 
the logarithm, InP,,(x), diverges at x = O .  This explains the numerical results for 
In P,,(x)  plotted in figure 1 0  using the results of the path-integral analysis. This graph 
indicates a change in behaviour at T = 1 which is consistent with a logarithmic diver- 
gence at x = O  for T >  1 .  The logarithmic divergence predicted by the small-D analysis 
is not, however, seen in the numerical simulations of the Langevin equation carried 
out at D=O.l, ~ = 3 ,  which provides evidence of the breakdown of the small-D 
expansion at the top of the barrier for T >  1 

Figure 10. The value of In P,,(x) from the path-integral analysis, plotted for r=0.6. 1.0, 
2.0 and 3.0. 

We can understand this breakdown in more detail by analysing the expression for 
PJx) as an integral over x, without employing the method of steepest descents. Before 
doing this, however, it is useful to study the form of the next order correction to (99) 
for T >  1 .  If we write 

Ps,(x, x)  = [ N X .  x)+DQG, x)+O(D2)1 exp(-fo@, x) /D)  (100) 

then the function Q(x, x) satisfies the equation 

V ' J Q  Q J2fo 2 J f o  d Q  1 d2fo 
O = - i - + - ( l + ~ v " )  Q+x- +---- T--- -+-- (101) 

JQ 1 
J X  7 ( i:) T ax T 2  dX T 2 d X  ax T 2 d X 2 '  

Assuming a scaling form Q(X, x ) = x ' I ( x / x )  as before, the nonlinear terms are again 
found to be negligible in the region of interest. However, the inhomogenuous term 
( 1 / ~ 2 j ( J 2 f o / J x 2 )  is not negligible and in fact determines the exponent r to be (7 -3 ) .  
The differential equation for I is also more complicated because of this term, and 
cannot be solved in closed form. However, in  the limit x-0, Q can be determined, 
which is all that is required if we are to evaluate P, , (x )  to next order. The resulting 
expression is 

P , , ( x ) = M ' ~ x ~ " ~ ' " ' e x p ( C ~ x ~ ' ~ ' / D ) [ 1 + 0 ~ D / ~ x ~ ' ~ ' ~ + O ~ D / ~ x ~ 2 ~ + O ~ D ' ~ 1 .  (102) 
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Thus there are two types of corrections to this order. The O(D/lx17") terms come 
from the small x expressions o f &  and R, whereas the O ( D / l x l z )  terms come from Q 
evaluated at x = O .  For T >  1, the former dominate the latter in the small 1x1 limit. This 
suggests that if we truncate the expression for Ps,(x, x ) ,  ignoring O ( D )  corrections to 
R ( x , x ) ,  that P, , (x)  would be a function of the combination D/lxl'+' only. Equation 
(102) is the D - 0  form of this function and clearly breaks down for 1x15 D'"'+". 
However, for Ixl+O, so that D/lxl'+l >> 1, presumably a different expansion applies 
which gives a finite result when x = 0. It is relatively straightforward to see this explicitly. 
From (97) and (98) 
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m 

dx C'lx-xl'-' exp(-SJD) exp(-C sign(x-x)/x - x 1 7 ( ~ X + x ) / D )  (103) 

where we have replaced fo(O, 0), the instanton action for uphill paths, by the more 
compact notation S,. This probability distribution is not yet normalized. Since, in the 
small-D limit, the normalization integral will be completely dominated by the region 
near the bottom of the potential wells, we can use the argument given in (36) el seq 
to show that a factor of D-' must be included in (103) if P,,(x) is to be correctly 
normalized. Using this and making the change of variable p = x -x ,  changing the 
range of integration to 0 s  p < a, and then making the further change of variable 
z =  (Tc/Dj'/''+"p' gives 

P,,(x) = D-"'-+') exp(-S,/D)0P(lx//D'"'+'') (104) 

where 

0 ( A ) = E ' I ~ ~ d r c o s h [ E A r ]  exp-[z"+""] (105) 

where E and 5' are constants. It is easy to check that evaluating 0 for A + a ,  i.e. 
D+O, leads to (102). However, if we take Ixl+O, D fixed, then we see that 

Ps,(0) - D-'/''+lJ exp(-SJD) (106) 

From (38) we can determine P,,(x) at the bottom of the potential well at x =  -1; 
a non-zero result, as expected. 

it equals D-'12, up to a constant. Hence we may also write (106) as 

This result is similar to one derived by Luciani and Verga (1987, 1988) for a piecewise- 
linear problem and using collective coordinate methods in a path-integral approach. 
However, in their result, the power of D in the prefactor has a different sign from that 
in (107). We do not understand this discrepancy, especially since our result is tied in 
via the crossover function 0 to the small-D behaviour (99) which agrees with numerical 
simulations. 

7. Conclusion 

In this paper we have shown that the path-integral formulation of model ( 1 )  with 
exponentially correlated noise can be used to obtain an expression (equation (67)) for 
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the stationary probability distribution, Ps , (x ) ,  in the small-D limit. Each of the factors 
in this expression was evaluated for various values of the noise correlation time, 7, for 
the quartic bistable potential V ( x ) =  -x2/2+x4/4.  A direct simulation showed this to 
be an excellent approximation for DSO(O.I) ,  except for a small region near the top 
of the barrier at x = 0, when 7 > 1. An analytic investigation of this phenomenon in 
section 6 revealed that the small-D approximation breaks down for values of x such 
that lxI< D'''".') ,when T >  1. For these values of x we expect (67) to be inapplicable; 

dependence on D which could not have been obtained by a straightforward steepest 
descent calculation. 

The existence of a critical value of T at which the nature of the stationary probability 
distribution changes has also been found in other studies (Hanggi et a1 1989, Debnath 
et a /  1990). The discussion presented here has the merit of being systematic and well 
controlled. We hope that we have shown the pewer of !he path-in!egra! approach !o 
the calculation of the stationary probability distribution while at the same time 
emphasizing the fact that the evaluation of the path-integral by steepest descents is 
only valid in the limit D+O. This has already been beautifully illustrated by Mannella 
et a1 (1990) for the calculation of the mean first-passage time; this paper, then, is an 
attempt to do  the same for the stationary probability distribution. 

The techniques discussed here are; in principle, generalizable to other, more 
complex, systems. It would be interesting to know if the breakdown of the small-D 
expansion for a critical value of T is a generic feature of stochastic processes where 
the noise is coloured, and if so, whether a simple characterization of this phenomenon 
is possible. 
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